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An evolutionary based strategy utilizing two normal distributions to generate children

is developed to solve mixed integer nonlinear programming problems. This Bell-Curve

Based (BCB) evolutionary algorithm is similar in spirit to (p + _) evolutionary strategies

and evolutionary programs but with fewer parameters to adjust and no mechanism for self

adaptation. First, a new version of BCB to solve purely discrete optimization problems is

described and its performance tested against a tabu search code for an actuator placement

problem. Next, the performance of a combined version of discrete and continuous BCB is

tested on 2-dimensional shape problems and on a minimum weight hub design problem.

In the latter case the discrete portion is the choice of the underlying beam shape (I,

triangular, circular, rectangular, or U).

1. Introduction.

Evolutionary methods are exceedingly popular with

practitioners of many fields; more so than perhaps any

optimization tool in existence. Historically Genetic

Algorithms (GAs) led the way in practitioner popu-

larity (Reeves 1997). However, in the last ten years

Evolutionary Strategies (ESs) and Evolutionary Pro-

grams (EPs) have gained a significant foothold (Glover

1998). One partial explanation for this shift is the in:

terest in using GAs to solve continuous optimization
problems. The typical GA relies upon a cumbersome

binary representation of the design variables. An ES

or EP, however, works directly with the real-valued

design variables. For detailed references on evolution-

ary methods in general and ES or EP in specific see

Back (1996) and Dasgupta and Michalewicz (1997).
We call our evolutionary algorithm BCB (bell curve

based) since it is based upon two normal distributions.

BCB for continuous optimization, first presented in

Sobieszczanski-Sobieski et al. (1998), is similar in
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spirit to ESs and EPs but has fewer parameters to ad-

just. A new generation in BCB is selected exactly the

same as a (# + ,_)-ES with ), =/_. That is, the best. p
individuals out of# parents plus ,_children are sele,:: d

for the next generation. Thus, fit individuals lnay

continue from one generation to the next. The recom-
bination and mutation mechanisms are illustrated in

Figure 1. Consider the line through two n-dimensional

parent vectors fl and P2 selected for mating. First,
determine the weighted mean /1_ of these two vectors

where the weights are given by the fitness of each par-

ent. Next, sample from a normal distribution N(0,cr,,)

to establish point/_ = M + 1fly -/_11 * N(0, am). Note

that /_ must lie on the line through P1 and P2 but

may lie outside the line segment PiP> Next, we gen-
erate a radius r for an n - 1 dimensional hypersphere
centered on /?. The radius is a realization from a

N(0, c%). Typically (err >> ,zm). Finally the child

is selected by sampling uniformly on the surface of

the n - 1 dimensional hypersphere. Hence, there are

two parameters er and _rm in addition to the tradi-
tional parameters of population size and number of

generations. The tails of the two normal distributions,
N(0, O'm) and N(0, err), provide opportunity for addi-

tional, low probability mutations.

Sobieszczanski-Sobieski et al. (1998) presented two

mating schemes that were tested for a continuous hub

design problem. Mating scheme 1 chose two parents
from a roulette wheel in which the sector sizes were

determined by a fitness value equal to the sum of the
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weight of the structure (the objective value) and the

maxinmm constraint violation. Mating scheme 2 se-

lected one parent from a roulette wheel based on objec-

tive values and a second parent from a roulette wheel
based on maximum constraint violation. Method 2

was shown to be superior and we use this mating

scheme in our BCB experiments in this manuscript.

The quality of solutions generated in Sobieszczanski-

Sobieski et al. (1998) were verified by comparing

BCB solutions to ones generated by CONMIN (Van-

derplaats 1973), a standard nonlinear programming

package. No attempt was made in Sobieszczanski-

Sobieski et al. (1998) to analyze the sensitivity of the

BCB parameters. Kincaid et al. (2000a) provide an in-

vestigation into BCB parameter selection. Two results

are of particular import to our work here. They found

that it is crucial to scale the range of values for the

decision variables so that the scales are roughly equiv-

alent. They also found that, in general, _r >> _rm
is best and that o'r = 4.0 and crm = 1.0 are reason-

able default values. Kincaid et al. (2000b) compares

the performance of BCB against two competing evo-

lutionary programs. In addition, a hybrid scheme is

examined in which BCB's role is to identify high qual-

ity basins of attraction before an efficient local search
takes over. Two local search schemes were tested--a

pattern search and a quasi-newton search. Although
the standard BCB performed well the hybrid approach

proved superior.

P
2

r

Figure 1. BCB Geometrical Construct in 3D Space

BCB must also be able to optimize purely discrete

problems as well. Our first experiment in this regard

was to simply round continuous BCB solutions to the

nearest discrete value (see Kincaid et al. 2000) for a 2-

member hub design problem. This approach is known

to work fairly well for quasi-discrete variables, that

is, the variables have a continuous physical interpreta-

tion but may be implemented only by choosing from

a discrete set of options. The thickness of commer-

cially available sheet metal is an example. In contrast,

the variables may be truly discrete. Choosing between

propellers or jet engines in an aircraft design optimiza-

tion problem is an example. The rounding approach is

totally inapplicable for truly discrete variables. Conse-

quently, in the truly discrete setting there is no obvious

analog to a line segment connecting parents. Defining

an underlying geometry via a lattice is possible but

our approach is to define an artificial neighborhood
structure.

The notion of a neighborhood we use rests on a def-

inition of distance between objects in a finite set. This

idea is not new. In particular, Kelly et al. (1994) use

a similar measure in their diversification strategies in

tabu search. To the best of our knowledge there is

no reference to this in the evolutionary strategy lit-

erature. To be generic, consider an example of three

objects, each possessing three attributes. Figure 2b
provides such an example in which the attributes are

letters chosen from a list of six letters (Figure 2a).
Initially we assume that the order of the attributes in

the object does not matter. We will remove this as-

sumption later. Now, consider object /3 and ask the

question: "How many letters must be changed to make

/3 identical to a?". By inspection, the answer is three.

The answer to the same question for "y is two. Finally

to change "_ to/3 we need change only one letter. Ob-

viously, the above questions may be reversed without

changing the answers. That is, the transformation of

a to _t also requires two letter changes. We now place

_,/3, and 7 on a numerical axis (Figure 2c). Choosing

a arbitrarily as a reference at 0, then the locations of

7 and/3 are 2 and 3 respectively. That is, each of these

objects is placed at the number of attribute changes

required to transform it to the reference object (c_ in

this case).

a) ABCDEF

b) 13--Tff>-],--

2. BCB for discrete optimization problems

BCB was designed to find high quality solutions to

continuous optimization problems. In order to solve
mixed continuous and discrete variable optimization

c) 7 13

0 1 2 3

Figure 2. Distance between members of a discrete set
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A definition of a distance between objects that are

identified by attributes chosen from a finite set emerges
from the example in Figure 2.

• The distance between two objects characterized

by discrete attributes drawn from the same set is

equal to the number of attributes that must be

changed in one object so that it is identical to the

second object in terms of its attributes.

The distance defined above might also be interpreted

as the dissimilarity between two objects. In this inter-
pretation, the null distance corresponds to a complete

similarity (no dissimilarity) while the distance equal

to the total number of attributes in the object (three

in Figure 2) signifies a complete dissimilarity (no sim-

ilarity). Note that the properties of the similarity and

dissimilarity are mutually complimentary-their mea-
sures add to 1.

Now consider the case when the order of attributes

in the object does matter. To illustrate the conse-

quence, consider a transformation of 3' to a. In addi-

tion to replacing the letters C and F with B and E

respectively, one needs to change to position of A in 3'

from position 2 to position I. Counting the two letter

replacements and the position exchange results in 3'

to a distance of 3. Although this describes correctly

how to construct the transformation of 7 into a we

will be interested in sampling among all the objects at

a prescribed distance e between the two objects.

The tacit assumption in these examples is that the

number of attribute positions in each object are the

same. Although this need not be the case in gen-

eral, it will be true for the problems we study. Given
the aforementioned distance definition we can now for-

mally describe a discrete version of BCB. We focus

on the case when the positions of the attributes do

not matter since that is the only type of discrete op-
timization problems we solve in this manuscript. The

symbols P1, P2, and C (two parents and the resulting

child) correspond to a, fl, and 3' respectively in the

previous discussion. Let k denote the number of at-

tribute positions in P1 and P2, let n denote the number

of possible attribute values (n > k), and let r denote
the number of attributes that are dissimilar between

P1 and P;.

Step 1. Place P1 and P2 on a numerical axis rang-

ing from 0 to the number of dissimilar components

between P1 and P2. Without loss of generality, let

P1 serve as the reference point at 0 on this numer-
ical axis.

The distribution is truncated at P1 and P2. The

parameter _rm must be chosen by the user.

Step 3. Let e denote the sample value chosen from

the distribution in step 2. Place the child B at a

distance e from PI on the numerical axis between

P1 and P2.

Step 4. Reorder the attributes of P1 and P2 so

that the k - r attributes in common appear in

the last k - r attribute positions. Assign the re-

maining r attributes of P1 and P2 randomly to
the first r attribute positions respectively within

P1 and P2- Label these reordered parents/51 and

/_'2- Construct a child B of Pl and P2 as follows.

First, set B = /_2. Then re-assign the attributes
contained in the first r - e positions of P1 to the

first r - e attribute postitions of B.

Step 5. Construct the final child C from B by

randomly mutating B. That is, with a small prob-

ability of occurrence, p, randomly (uniformly) re-

place any attribute of B with any of the allowed
attribute values.

As our first experiment with discrete BCB we con-
sider a actuator location problem to dampen the noise

in the interior of a cylinder. In this example an m by n
matrix contains the relevant data. The m rows denote

the noise measurements taken at m microphones in the

interior of a cylinder for a single frequency disturbance

(200 Hz.). The n columns correspond to the available
sites for actuator locations. The actuator locations

are on the surface of a cylinder and their purpose is

to produce an anti-noise signal to cancel out the noise
produced by the single frequency noise source. Only k

actuators (number of attribute positions) may be se-

lected from the n = 102 possible locations (attributes).

(Order does not matter in this example.) We com-
pare the performance of discrete BCB against a tabu

search code taken from Kincaid et al. (1997). The per-

formance measure is the decibel (db) reduction in the
noise level. We note that the db scale is logarithmic.

Table 0 summarizes a comparison of our discrete BCB

versus tabu search for an actuator placement problem
on a cylinder. As can be seen from Table 0 BCB does
as well or better than tabu search for all k and with

far fewer solutions examined for k > 4. Buoyed by the

success of the discrete version of BCB we proceed to

examine an approach that combines continuous BCB
with discrete BCB.

We note that many discrete optimization problems

can be modeled as selecting k out of n columns (at-

Step 2. Create a truncated discrete normal dis- _ _ tributes ) for a given m by n matrix. In these types of
tribution on the axis described in step 1. The problems a performance measure is given that maps

distribution is centered on a point M whose lo- the entries in the appropriate m by k submatrix to a

cation may be at the midpoint between P1 and single number. Given our previous distance measure
P2 or it may be shifted toward the fittest parent, for discrete objects in which order does not matter two
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parent solutions fil and fi2 are neighbors if it is possi-
ble to exchange one of the k indices in P1 with one of
the n - k indices not in fil and arrive at fi2. That is,

t31 and fi_ must have k - 1 indices in common.

k
4

8

14

16

20

32 ]

Best _ Solns. Best

BCB (db) Exam. Tabu (db)

- 14.2 20,000 -14.2

-19.5 20,000 -19.5

-23.7 --_20,000 _ -2:3.7

-25.2 20,000 -25.2

-27.0 20,000 -26.3

-33.2 20,000 -32.2

:_ Solns.

Exam.

23,000

45,000

62,000

83,000

i00,000

116,000

Table 0. Actuator Selection: BCB versus tabu search
(k out of 102)

3. Description of mixed BCB.

In this description it is convenient to let the discrete

variables represent a discrete set of design elements

(e.g. beam cross-section types) while the continuous

variables represent the dimensions of the design el-

ements (e.g. thickness, height etc. of the beams).

Suppose that our structure has b beams, and that there

are t possible beam types. Further suppose that the

cross-section of each beam type can be described by
n continuous variables We have examined two basic

approaches to handling the discrete and continuous

variables. The first approach is a bi-level method.

That is, the main objective is to choose an optimal set

of design elements (beam types), while the secondary

objective is to optimize the dimensions of the design
elements. In this approach a solution is represented as

(yl, y2, ..., y_) where yi is in the range [1, t]. Thus, the
value of Yi indicates which beam type we have chosen

for beam t. Recombination is done by discrete BCB.

Evaluation of the fitness of a solution requires a

secondary optimization. If continuous BCB is the op-

timizer of choice then a population of solutions of the
form

(_:11 _'• • •, Xln; X21, * • •, X2n; • • • _ Xt l, • • •, Xtm)

is constructed, where x,j represents the jth cross-
section decision variable of the ith beam type. The

continuous version of BCB would be applied to this

population, and when BCB terminates, the fitness of

the best solution would be associated with the original

(yl, y_, .., yb).
The second approach is at one level. That is, we

treat the discrete and continuous variables as a sin-

gle collection of decision variables. As before suppose

that our design structure has b beams, and that there

are t possible beam types. Further suppose that the

cross-section of each beam type can be described by
n continuous variables. Then a l-level solution is a

vector _ that is a concatenation of b vectors of the

form

Xll,...,Xln; X21,...,22n;...; Xtl,..-,Xtrn)

with one such vector for each beam. Here, xij repre-
sents the jth cross-section decision variable of the ith

beam type. Thus, a solution will describe not just b

beams, but b,t beams. A second vector (yl, y2,..-, yb)

indicates the chosen set of beam types, where Yi is in

the integral range of [1,t]. Hence, the vaIue of yi in-
dicates which beam type we have chosen for beam i.

Given two parents of the form described above, con-
tinuous BCB recombines the _'s and discrete BCB

recombines the ff's.

We have tested both the l-level and 2-level approach

on the problems described in the next section. The 2-

level approach required an order of magnitude longer

runtime and was less consistent in identifying high

quality solutions. Hence, in the next section we report
only on the computational results for the l-level ap-

proach. This does not mean that the 2-level approach

is without merit. There are at least two ways in which

this is so. First, as the number of discrete decision

variables increases the runtime increases more quickly

for the l-level than for the 2-level approach. Second,

the 2-1evel approach allows for the possibility of using
a different solver for each level.

4. Mixed continuous and discrete:

2-dimensional shape problems.

Throughout this section we report solely on the

l-level BCB solution approach. We begin with a 2-

dimensional mixed continuous and discrete optimiza-
tion problem in which 5 shapes must be selected so

that the total perimeter of the 5 shapes minus the

maximum difference in perimeter between any pair is
maximized. There are 3 choices for the 5 shapes-a

circle, a square or a right isosceles triangle. The con-

tinuous variable is the radius (r) for the circle, the

length of the base (b) for the triangle and the length

of a side (s) for a square. We have two additional con-
straints. The total area must be less than 100 units

and at most 4 shapes may be triangles. Note that the

perimeter to area ratios are: 2/r for a circle, 4/s for

a square, and (4+2v_)/b for a triangle. Thus, trian-

gles contribute more to the perimeter per unit area

and circles contribute the least. The optimal set of

shapes then for our constrained problem will be four

triangles and one square. It is straight forward to de-

termine the optimal value of the triangle base b and

the side s of the square. Hence, the optimal solution

and objective value (103.346) is known a priori. Table
1 shows that the correct shapes are determined first.

The optimization of the values for b and s take longer

to compute.

Next is a related problem whose optimal solution is
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more difficult for BCB to find. We still wish to se-

lect 5 shapes from a list of three (circle, triangle, and

square), but now we order the five positions 1 through

5. The goal is to choose 5 shapes (possibly with re-

peats) and the dimensions of those five chosen shapes
to minimize the total perimeter. Each chosen shape's

perimeter is then weighted by its position in the list:

the first shape in the list is weighted by 5, the sec-

ond by 4, the third by 3, and so on. The continuous

variable is, as before, the radius (r) for the circle, the

length of a side (s) for the square and the length of

the base (b) for a right isosceles triangle. The con-

straints, however, are different than before. The total

area must be greater than 100 units and each contin-

uous variable has a lower bound of 1.0 and an upper

bound of 10.0. The optimal set of shapes is 4 triangles

and 1 circle with an objective value of 82.9. The circle

has the smallest perimeter to area ratio (2/r) and is
chosen for position 5 with r just large enough so that

100 - (sum of the 4 triangles area) is satisfied. Small

triangles are chosen for the remaining 4 shapes since its

perimeter to area ratio is largest. Table 2 summarizes

the computational results. We see that the conver-

gence to the optimal shapes proceeds at roughly the

same rate as for the optimal values of b and s. We

conjecture that BCB has a more difficult time select-

ing the optimal set of shapes because a solution of 4

squares and 1 circle is a nearby local optimum with an

objective value of about 90.7.

In an attempt to understand how BCB scales with

respect to the number of discrete variables we solve the

position dependent shape problem with the addition of

regular polygons with 5, 6, 8, and 10 sides. Increasing

the number of possible shapes exhibits a linear rela-

:g/:Sols

2000

3000

4000

6000

8000

10000

20000

Mean Min Freq. of Opt.

Best Obj Best Obj Set of Shapes

72.4 77.841 1/15

97.9 100.541 6/15

102.2 102.469 10/15

I03.3 I03.332 12/15

102.7 103.320 14/15

102.9" 103.328 i5/15

103.3 103.346 15/15

Table I, Solution quality: popsizevarles while numgens

is constant

_Sols

2000

2000

4000

6000

8000

10000

20000

50000

Mean Min Freq. of Opt.

Best Obj Best Obj Set of Shapes

72.4 77.841 1/15

92.3 87.4 0/15

92.4 83.7 2/15

88.3 82.9 4/15

87.3 82.9 2/15

86.5 82.9 3/15

83.7 82.9 8/15

83.8 82.9 10/15

Table 2. Solution quality: popsize varies while numgens

is constant

tionship with run time in Table 3. We note, however,

that the mean solution quality degrades as does the

frequency of identification of the optimal shapes as the

number of possible shapes increases.

Possible"

Shapes

3

4

5

6

7

Mean Min

Best Best

83.7 82.9

87.7 82.9

90.6 82.9

89.9

94.3 ] 82.9

Freq. Opt.

Set Shapes Time

10/15 28.4

4/15 34.5

4/15 40.4

4/15 46.3

2/15 52.5

Table 3. Computing time as a function of discrete

variables (15 reps, 20000 soln.)

Table 4 records the number of solutions needed to

roughly keep the mean best objective and the fre-

quency of the optimal set of shapes roughly the same

as the number of possible shapes. In Table 4 below" we

use 4P as an abbreviation for 'Design Number'. This

same abbreviation appears in Tables 6 and 8. Here it
is harder to determine the exact relationship between

the number of shapes and run time. It appears to have

a big jump from 3 to 4, hit a plateau for 4, 5, and 6,

and then make another jump form 6 to 7.

Mean Min Freq. Opt.

Best Best Set Shapes Time Soln.

3 83.7 82.9 10/15 28.4 20,000

4 83.2 82.9 II/15 138.3 80,000

5 83.2 82.9 11/15 162.7 80,000

6 83.9 82.9 . 8/1.5 187.2 80,000
7 83.4 82.9 II/15 427.3 160,000

Table 4. Computing tlme as a function of discrete

variables (15 reps.)

5. Test Case Descriptions.

Our standard test problem in Sobieszczanski-

Sobieski et al. (1998), Kincaid et al. (2000a) and

Kincaid (2000b) has been a minimum weight (volume)
design of a hub structure also found in Balling and

Sobieszczanski-Sobieski (1994). Each member of the

hub is an I-beam rigidly attached to the hub and to the
wall. The beam cross-sectional dimensions are the de-

sign variables, and the constraint functions reflect the
material allowable stress as well as overall and local

buckling. The top and bottom flanges of the I-beam

are not necessarily of the same dimensions. Hence,

the cross-section of each I-beam requires six design

variables. Figure 3 illustrates a 2-member hub prob-

lem. Additional details may be found in Padula et al.

(1997). The utility of the hub structure as a test case

stems from its ability to be enlarged by adding as many

members as desired without increasing the dimension-

ality of the load-deflection equations. These remain 3

by 3 equations for a 2-dimensional hub structure re-
gardless of the number of members. While analytically

simple, the hub structure design space is complex be-
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cause the stress, displacement and buckling constraints

are rich in nonlinearities and couplings among the de-

sign variables. Our goal is to extend this problem so

that, in addition to choosing the dimensions of the

beams so as to minimize the volume of the hub frame,

we would also select (among a finite list) the beam

type.

We see that most designs yield similar minimum vol-

umes, but there is a range of about 50 units from the

best to the worst designs. We take these minimum val-

ues in Table 5 to be our "known" optimal solutions.

Next, we apply mixed BCB to the 3 possible shape, 2-

beam hub design problem. The choice of beams is no

longer fixed. Table 6 records the frequency with which

each design was chosen, along with the minimum vol-

ume identified for each chosen design. The table is

arranged with the best known designs at the top and

the worst at the bottom. Ideally, the frequency of de-

sign (1, 3) would be nearly 100%.

=_N

Cross-semtlonA-A ___ _ ]1"_

Figure 3. 2'member hub description

As a first step in this direction we consider 3 beam

cross-section types--I, circular, and triangular. In all

cases the overall length of the beam is held constant

amongst the cross-section types. The I-beam has 6

design variables; the circular beam has 2 design vari-

ables; and the triangular beam has 3 design variables.

We consider the 2-beam hub design problem, yield-

ing 9 possible beam design combinations (e.g. (I,I),

(I,circular), (I, triangular) etc.). To determine the

quality of the designs found by BCB we examine each

of the 9 possible beam design combinations and solve

the resulting continuous hub problem with the contin-

uous version of BCB. We repeat this 50 times and the

best solutions found for each design are given in table

5. In the design column we let 1 = I, 2 = circular,

and 3 = triangular.

Design rank

1,1 4

1,2 2

1,3 8

2,1 3

2,2 1

"2,3 6

3,1 7

3,2 5

3,3 9

Min Vol Mean Vol Std. Dev.

570.60 573.27 1.98

569.15 572.53

591.88

4.62

596.60 599.02 2.32

570.31 574.12 3.27'

568.91 571.05 2.55

593.30 596.69 1.67

594.16 596.69 2.12

592.73

618.44617.i3

0.66

1.33

Table 5. 2-beam hub design enumeration: 50 reps of
continuous BCB

Freq

%

2,2 54

1,2 2

2,1 20

1,1 O

3,2 4

2,3 18

3,1 0

1,3 0

3,3 2

Known MinVol Mean Vol

Min Vol Found Found

568.34 568.80 576.98

569.15 592.15 592.03
570.31 570.32 .... 582.10

570.60

591.88 595.07 603.09

593.30 592.81 602.00

594.16
596.60

623.57 623.57[ 617.13

S°D.

6.84

NA

9.18

8.02

9.99

NA

Table 6. 2-beam hub design optimization: 50 reps

of mixed BCB

We can make several observations from the data.

The best design, (2,2), was identified over half the

time. The second best design was only selected 2%

of the time. Several poorer designs were identified

more frequently than some better designs. The designs

that include circular beams tend to be more frequent,

even though they are not the best. This last observa-

tion suggests that there is some bias towards choosing

circular beams. One explanation is that due to its

simpler shape (2 design variables) it's continuous vari-

ables are optimized more quickly than the complex

I-beam shape (6 design variables), That is, early in

the search, circular beams appear more attractive than

I-beam or triangular beams, because they reach their

optimal shape more quickly. To test this hypothesis

we construct an example in which each of the beam

shapes have the same number of design variables.

We consider three possible beam types: triangle

(shape 3), rectangle (shape 4), and a U shape (shape

5). Each of these shapes have 4 design variables. As

before we consider the 2-beam hub structure, which

gives 9 possible designs. To determine how good each

design is, we enumerate all possible designs, fixing the

choice of shapes in each case. Based on 50 replications

in table 7, we accept the following minimum volumes

as the best "known" solutions. The range from best

to worst is approximately 50 units.

Next we apply mixed BCB (level-1 approach) to the

2-beam 3-shape problem, allowing BCB to pick the

shapes as well as optimize the design variables for each
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shape. As before we applied the algorithm 50 times.

Table 8 records the frequency with which each design

appears out of the 50 replications, along with the min-

imum volume, mean volume, and standard deviation

of the volumes for each chosen design. The table is

ordered so that the best "known" designs are at the

top.

In each design above, the minimum volume was

relatively close to the known best volume. In fact,

when we consider the interval [(mean volume- S.D.

volume),(mean volume + S.D. volume)] for both the

known and the experimental results, we see that these

intervals overlap for each of the 9 possible designs.

As indicated in table 8, the known best design was

identified most often and the top three designs were
identified 60% of the time. Yet, some poorer designs

were still identified more frequently than we would

have liked. For example design (4, 5) was identified

as the best design in 10 percent of the replications.

Consequently, our hypothesis that inequality in the

number of design variables per shape biased the results
in table 6 is only partially supported by the results in

table 8. It remains to explore further the interplay be-

tween the discrete and continuous BCB algorithms for

mixed design optimization problems.

6. Conclusions.

We began by developing a discrete version of BCB

and testing its performance against a tabu search code

on a previously studied problem. Next, we proposed

two ways to link the discrete and continuous version

of BCB to solve mixed integer nonlinear programming

Design rank Min Vol

3,3 4 592.527

3,4 2 570.411

3,5 9 612.744

4,3 7 610.161

4,4 5 601.918

4,5 8 612.488

5,3 3 580.845

5,4 1 560.001

5,5 6 606.040

Mean Vol

606.995

579.438

630.374

621.382

607.150

624.700

596.797

567.765

630.778

S.D. Vol

9.132

18.332

14.484

7.494

4.079

7.642

17.342

8.399

I 26.936

Table 7. 2-beam hub design enumeration: 50 reps of

continuous BCB

Freq

%
5,4 26

3,4 16

5,3 18

3,3 8

4,4 4

5,5 8

4,3 4

4,5 10

3,5 6

Known

Min Vol

560.001

570.411

580.845

592.527

601.918

606.040

610.161

612.488 -_=612.781-- 627.202

6i2.744 600.438 670.673

Min Vol Mean Vol

Found Found

561.124 585.633

571.198 577.874

596.897 620.329

577.540 589.838

601.950 604.141

610.614 624.926

618.275 623.161

S°D.

66.195

5.884

30.450

10.278
,,I

2.211

18.084

4.886

12.751

98.640

Table 8. 2-beam hub design optimization: 50 reps

of mixed BCB

problems. Preliminary experiments indicated that the

l-level version was superior to the 2-level approach for
a modest number of discrete variables. Further testing

was completed for the l-level version for 2-dimensional

shape optimization problems. Finally, the l-level ver-

sion of BCB was applied to a standard hub design

problem in which the beam type is to be selected in

addition to determining the continuous dimensional

aspects of the beam.

A 2-beam hub design problem in which 3 beam types
are available was examined first. Here it was found

that the l-level approach was biased towards the beam

type with fewest dimensions. It was conjectured that
if all the beams had the same number of dimensions

then the biasing would disappear. Towards this end a

second 2-beam hub design problem was tested in which

3 beam types, each with 4 continuous design variables,
were available for selection. The results of this latter

test were encouraging but still did not fully explain

why some poorer designs were chosen with relatively

high frequency.

In addition to gaining a better understanding of the
interactions between the discrete and continuous ver-

sion of BCB for mixed integer nonlinear problems our
future research includes further tests for the discrete

BCB algorithm by itself. In particular, we will de-
velop and test versions of discrete BCB for problems
in which the order of the attributes matter and when

parent solutions are allowed to have an unequal num-

ber of attribute positions.
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